If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+62x+2=0
a = -16; b = 62; c = +2;
Δ = b2-4ac
Δ = 622-4·(-16)·2
Δ = 3972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3972}=\sqrt{4*993}=\sqrt{4}*\sqrt{993}=2\sqrt{993}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{993}}{2*-16}=\frac{-62-2\sqrt{993}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{993}}{2*-16}=\frac{-62+2\sqrt{993}}{-32} $
| 7(n+5)=2(3n+17) | | 7(n+5)=2(3n+17 | | 9+x/2=9,5 | | 4x,x=16 | | 15z+3=18 | | 0.06x=265 | | x+0.06=265 | | −2(-3+3)=y-4 | | 9+x/2=19/2 | | x+9–6x=-3x+9 | | x+0.09x=21250 | | x+0.0x=21250 | | 7x-3+5x-4=8x-5-x | | (X-5/7)(x+3/4)=0 | | x+0.09x=21,250 | | -5t^2+25t=0 | | 5-2(x+1)=4x-3(x+5)-4 | | x+0.09x=49450 | | 9y=5y×800+9 | | x²+10x+9=0 | | X=13y-y | | 0.09x=49450 | | x+0.09=49450 | | F(x)=-16(x^2)+144 | | -9(-5)-12y=3 | | 5p-8=3p+7 | | 2a-12=21-5a | | 6x-3x+13=4 | | 7^3x+1=349 | | 12x-7+x-5=11x-10+x | | x+0.2x(1-0.25(x-6)^2)=0 | | |9x-4|=7 |